AC 27/2/13 Item No. 4.20

T.Y.B.Sc. **CHEMISTRY Credit Based Semester and Grading System** To be implemented from the Academic year 2013-2014

SEMESTER V

Theory Course UNIT TOPICS Credits L / Week **1.1 Colligative Properties of Dilute** Solutions (8L) **1.1.1** Dilute solution, colligate properties, Raoult's law, relative lowering of vapour pressure. **1.1.2** Elevation in boiling point of a solution, thermodynamic derivation relating elevation in the boiling point of a solution and the molar mass of the non-volatile solute. **1.1.3** Depression in freezing point of a solution, thermodynamic derivation relating the depression in the freezing point of a solution and the molar mass of the non-volatile solute. **1.1.4** Osmotic pressure, van't Hoff's equation for osmotic pressure, (derivation is expected) and determination of molar mass of the **USCH501** Ι 2.5 1 solute. Abnormal molar masses of solutes and van't Hoff factor (calculation of Degree of Association and Degree of Dissociation.) **1.2 Phase Rule** (7L)**1.2.1** Gibb's phase rule and terms involved in the equation. **1.2.2** Application of phase rule to ONE component systems (i) water system, (ii) sulphur system **1.2.3** Application of phase rule to TWO component systems, condensed systems, condensed phase rule, eutectic systems (Lead-Silver system), desilverisation of lead. **1.2.4** Introduction to three component system, explanation of phase diagram for three liquids forming one immiscible pair.

	2.1 Surface Chemistry & Catalysis	
	(9L)	
	2.1.1 Adsorption: Physical and	
	Chemical Adsorption, types of	
	adsorption isotherms. Langmuir's	
	adsorption isotherm (Postulates and	
	derivation expected) BET equation	
	for multilayer adsorption (derivation	
	not expected) significance of the terms	
	involved in the equation is	
	avported) determination of surface	
	expected.), determination of surface	
	area of an adsorbent using B.E.T.	
	equation. Numericals on surface area	
	determination are expected.	
	2.1.2 Catalysis: Homogeneous and	
	heterogeneous catalysis, catalytic	
	activity and selectivity, promoters,	
	inhibitors, catalyst poisoning and	
	deactivation,	
	2.1.3 Acid-Base catalysis, mechanism	
II	and kinetics of acid-base catalyzed	1
	reactions, effect of pH on acid-base	
	catalyzed reactions. Mechanism and	
	kinetics of enzyme catalyzed reaction	
	(Michaelis-Menten equation).	
	2.2 Colloids (6L)	
	2.2.1 Introduction to colloidal state of	
	matter.	
	2.2.2 Origin of charge on colloidal	
	particles Concept of electrical double	
	laver zeta potential Helmholtz and	
	Stern model Electro-kinetic	
	nhenomena: 1 Electronhoresis	
	2 Electrophoresis 3 Streaming	
	notential 1 Sedimentation notential	
	2 2 3 Colloidal electrolytes	
	2.2.5 Conordar electrorytes.	
	2.2.4 Donnan Wembrane Equilibrium.	
	2.2.5 Surfactants, infected to infation,	
	detergents food industry in posticide	
	formulations	
	5.1 Electrochemistry –	
	Electrochemical cells (15L)	
	5.1.1 Lewis concept of Activity and	
	Activity coefficient, Mean ionic	
III	activity and mean ionic activity	1
	coefficient γ_{+} of an electrolyte,	-
	expression for activities of electrolytes	
	of different valence type, ionic strength	
	of a solution, Debye-Huckel limiting	
	law (derivation not expected)	

	3.1.2 Classification of cells: 1.chemical	
	cells without transference	
	2. Concentration cells with and without	
	transference (derivations of	
	expression for concentration cell EMF	
	are expected) Origin of liquid-liquid	
	junction potential and its elimination	
	using a salt bridge.	
	3.1.3 Applications of EMF	
	measurements in the determination	
	of 1. pH of a solution using	
	quinhydrone and glass electrode. 2	
	solubility and solubility product of	
	sparingly soluble salts using chemical	
	cell and concentration cell method 3 .	
	determination of liquid-liquid junction	
	potential.	
	4.1 Introduction to Polymers (8L)	
	4.1.1 Basic terms : macromolecule.	
	monomer, repeat unit, degree of	
	polymerization.	
	4.1.2. Classification of polymers	
	based on (i) source, (ii) structure, (iii)	
	thermal response, (iv) physical	
	properties.	
	4.1.3. Molar masses of polymers : 1.	
	Number average molar mass, 2. Weight	
	average molar mass, 3. Viscosity	
	average molar mass, monodispersity,	
	polydispersity.	
	4.1.4. Methods of determining molar	
	masses of polymers : 1. Ultrcentrifuge	
	method (Limiting velocity method	
TX 7	only). Viscosity method (Mark-	1
1 V	Houwink equation).	1
	4.1.5. Introduction to light emmiting	
	polymers (characteristics, method of	
	preparation and it's application are	
	expected).	
	4.2 Crystalline State (7L)	
	4.2.1. Laws of Crystallography	
	4.2.2 . Characteristics of simple cubic,	
	face centered and body centered cubic	
	system, inter planar distance in cubic	
	lattices (only expressions for ratios of	
	inter planar distances are expected).	
	4.2.3. Use of X- rays in the study of	
	crystal structure, Bragg's equation (
	derivation expected), X- ray diffraction	
	method of studying crystal lattices,	
	structure of NaCl and KCl,	

		determination of Avagadro number. 4.2.4. Elementary idea of defects in crystals- Frenkel defect and Schottky		
		defect.		
		1. Chemical Bonding And Solid State		
		Chemistry (15L)		
USCH502	I	1.1 Molecular Symmetry (10L)1.1.1 Introduction and Importance.1.1.2 Symmetry elements andsymmetry operations.1.1.3 Concept of a Point Group withillustrations using the following pointgro ups: (i) C_{av} (HCl), (ii) D_{ah} (H ₂),(iii) C2v (H ₂ O), (iv) C_{3v} (NH ₃), (v) C_{2h} (trans – trichloroethylene), and (vi) D_{3h} (BCl ₃).1.2 Molecular Orbital Theory forPolyatomic Species (5L)1.2.1 Simple triatomic species: H ₃ ⁺ andH ₃ (correlation between bond angle andMolecular orbitals).1.2.2 Other molecules (considering only σ-bonding): i) BeH ₂ , ii) H ₂ O,	2.5	1

	2. Solid Materials (15L)	
	2.1 Structures of Solids (10L)	
	2.1.1 Importance of solid state	
	chemistry.	
	2.1.2 Classification of solids on the	
	basis of bonding.	
	2.1.3 Explanation of terms iz.crystal	
	lattice, lattice points, unit cells and	
	lattice constants.	
	2.1.4 Closest packing of rigid spheres	
	(hcp, ccp), packing density in simple	
	cubic, bcc, fcc and hcp lattices	
	(numerical problems expected).	
	2.1.5 Structure metallic solids.	
	2.1.6 Tetranedral and octanedral	
	tetrahedral heles limiting radius, ratios	
	for different coordination numbers and	
II	their significance calculation of	1
	limiting radius ratio for coordination	
	number 4	
	2.1.7 Structures of sodium chloride and	
	cesium chloride.	
	2.2 Superconductivity (05L)	
	2.2.1 Superconductivity, Meissner	
	effect.	
	2.2.2 Different superconducting	
	materials viz convential	
	superconductors organic	
	superconductors, organic	
	superconductors, arkan metar functions (A, C) and high temperature	
	(A_3C_{60}) and high temperature	
	Superconductors.	
	2.2.3 Applications of superconducting	
	materials.	
	3. Chemistry of elements (15L)	
	3.1 Inner transition elements (3L)	
	3.1.1 Introduction: position of f-block	
	elements and comparison between	
	lanthanides and actinides	
	3.1.2 The shapes of <i>f</i> -orbitals.	
	3.1 Lanthanides Series (10L)	_
III	3.2.1 Chemistry of lanthanides with	1
	(ii) Oxidation states (iii) magnetic and	
	spectral properties	
	3.2.2 Occurrence extraction and	
	separation of lanthanides by Solvent	
	extraction	
	2 2 2 Amiliantiana effective	
	3.2.3 Applications of lanthanides.	

		3.3 Actinides Series (2L)		
		3.3.1 Chemistry of Uranium and with		
		reference to occurrence, extraction		
		(solvent extraction method),		
		3.3.2 Properties and applications.		
		4. Solution Chemistry		
		4.1 Acid-base Chemistry in Aqueous		
		Medium (8L)		
		4.1.1 Acidity of mono- and polyatomic		
		cations.		
		4.1.2 Basicity of mono- and polyatomic		
		anions (discussion for 4.1.1 as well as		
		4.1.2 to Include Latimer equation and		
	137	predominance diagrams).		1
	1 V	4.2 Chemistry in Non-aqueous		1
		Solvents (7L)		
		4.2.1 Classification of solvents and		
		importance of non-aqueous solvents.		
		4.2.2 Characteristics and study of		
		liquid ammonia, dinitrogen tetraoxide		
		and acetic acid as non-aqueous		
		solvents with respect to (i) acid-base		
		reactions and (ii) redox reactions.		
		1.1. Mechanism of Organic		
		Reactions (15L)		
		1.1.1 Thermodynamic and Kinetic		
		control of organic reactions: Concept		
		with mechanisms of the following		
		reactions: addition of HX to butadiene;		
		sulfonation of naphthalene.		
		Nucleophilicity/ electrophilicity vs		
		Basicity/acidity.		
		1.1.2 Mechanism of elimination		
		reactions, with stereochemistry: E1 and		
		E2 reactions: regioselectivity (Saytzeff		
		and Hofmann rules).		
USCH503	Ι	1.1.3 Mechanism of reactions of	2.5	1
		carbonyl compounds with		
		nucleophiles: 1.1.3.1 Formation of		
		acetals/ketals from aldehydes and		
		ketones. 1.1.3.2 Reaction of aldehydes		
		and ketones with primary and		
		secondary amines. 1.1.3.3 Acyl		
		nucleophilic substitution (tetrahedral		
		inechanism). Acid catalysed		
		esternication of Carboxylic acids and		
		1 1 4 Machaniam of rearrangements		
		with examples and storoochemistry		
		whenever applicable 1141 Migration		
		to electron deficient carbon: Dinacol		
	L			

	Benzylic acid. 1.1.4.2 Migration to	
	electron deficient nitrogen. Beckmann	
	Hofmann	
	1.1.5 Machanism of the following	
	1.1.5 Mechanism of the following	
	reactions with synthetic application.	
	Claisen condensation, Michael	
	addition.	
	2. Stereochemistry (15L)	
	2.1.1 Molecular chirality and element	
	of symmetry: Mirror Plane symmetry	
	(inversion centre), rotation-reflection	
	(alternating) axis Chirality of	
	compounds without stereogenic	
	contra: cummulanes spirans and	
	binhonyla	
	$\begin{array}{c} \text{orphenyls.} \\ orphe$	
	2.1.2 Stability of cycloalkanes: Strains	
	in cycloalkanes-angle,eclipising,	
	transannular (3 to 8 membered).	
	Conformations of cyclohexane, mono-	
	and di- alkyl cyclohexanes and their	
	relative stabilities.	
тт	2.1.3 Stereo selectivity and Stereo	1
11	specificity: Idea of enantioselectivity	1
	(ee) and diastereoselectivity	
	(de) Tonicity-enantiotonic and	
	diastereotonic atoms, groups and faces	
	Storoochomistry of	
	(1) Substitution reactions $S = 1$ $S = 2$	
	(1) Substitution reactions- S_N1 , S_N2 ,	
	$S_{\rm NI}$ (reaction of alcohol with thiony)	
	chloride). (2) E_2 -anti-elimination-Base	
	induced dehydrohalogenation of 1-	
	bromo-1,2- diphenylpropane.	
	(3) Addition reactions to olefins-1)	
	catalytic hydrogenation ii) bromination	
	(electrophilic anti addition) (iii)syn-	
	hydroxylation (molecular addition)	
	with OsO ₄ and KMnO ₄ .	
	3.1 Carbohydrates (10L)	
	3.1.1 Introduction: Classification.	
	Sources Reducing and non-reducing	
	sugars DL notation	
	3.1.2 Structures of monosaccharides:	
	Fischer projection (4.6 carbon	
	monoseeeherides and Hewerth	
III	formula European and numerican former	1
	formula-rulanose and pyranose forms	
	or pentoses and nexoses.	
	Interconversion :open and Haworth	
	torms of monosaccharides with 5 and	
	6 carbons. Chair conformation with	
	stereochemistry of D-glucose and D-	
 	fructose. Stability of chair forms of D-	

	glucose.	
	3.1.3 Determination of open chain	
	configuration- of D-glucose assuming	
	the configuration of D-arabinose; and	
	of D-fructose assuming the	
	configuration of D-glucose.	
	3.1.4 Anomers and epimers of	
	monosaccharides. Enantiomers and	
	diastereomers of glucose. Mutarotation	
	(with mechanism) in D-glucose.	
	3.1.5 Chain lengthening and shortening	
	reaction: Modified kiliani-fischer	
	synthesis. Wohl method.	
	3.1.6 Reactions of D-glucose and D-	
	fructose: (a) osazone formation (b)	
	reduction- H ₂ /Ni, NaBH ₄ c)oxidation-	
	bromine water, HNO ₃ , HIO ₄ . D)	
	interconversion of D-glucose	
	and D-fructose e) acetylation f)	
	methylation [e and f with cyclic	
	pyranose form].	
	3.1.7 Commercial importance of	
	carbohydrates in pharmaceutical,	
	paper, food and Textile industries.	
	3.2. IUPAC Nomenclature (5L)	
	IUPAC systematic and accepted trivial	
	nomenclature of the following classes	
	of compounds, including substituted	
	ones (up to 2 substituents/ functional	
	groups):	
	3.2.1 (a)Bicyclic compounds- spiro-	
	, rused, and bridged (upto 1 Icarbon	
	atoms)-saturated and unsaturated	
	compounds.	
	3.2.2 (0) Diplicitly IS. 3.2.3 (a) Cummulance unter 2 devial	
	bonds (d) Monogualia (5 and 6	
	membered) aromatic and non-aromatic	
	heterocyclic compounds containing a	
	maximum of two hetero atoms among	
	N \cap S	
	3 1 1 Introduction: Classification	
	Sources Reducing and non-reducing	
	sugars DL notation	
	312 Structures of monosaccharides	
	Fischer projection (4-6 carbon	
	monosaccharides and Haworth	
	formula-Furanose and pyranose forms	
	of pentoses and hexoses	
	Interconversion onen and Haworth	
	forms of monosaccharides with 5 and	
	6 carbons. Chair conformation with	
	6 carbons. Chair conformation with	

	stereochemistry of D-glucose and D-	
	fructose. Stability of chair forms of D-	
	glucose	
	3.1.3 Determination of open chain	
	configuration- of D-glucose assuming	
	the configuration of D-arabinose: and	
	of D fructors assuming the	
	or D-indecose assuming the	
	configuration of D-glucose.	
	3.1.4 Anomers and epimers of	
	monosaccharides. Enantiomers and	
	diastereomers glucose. Mutarotation	
	(with mechanism) in D-glucose.	
	3.1.5 Chain lengthening and shortening	
	reaction: Modified kiliani-fischer	
	synthesis. Wohl method.	
	3.1.6 Reactions of D-glucose and D-	
	fructose: (a) osazone formation (b)	
	reduction- H ₂ /Ni, NaBH ₄ c)oxidation-	
	bromine water, HNO ₃ , HIO ₄ . D)	
	interconversion of D-glucose	
	and D-fructose e) acetylation f)	
	methylation [e and f with cyclic	
	pyranose form].	
	3.2. IUPAC Nomenclature (5L)	
	IUPAC systematic and accepted trivial	
	nomenclature of the following classes	
	of compounds, including substituted	
	ones (up to 2 substituents/functional	
	groups):	
	3.2.1 (a)Bicyclic compounds- spiro-	
	fused and bridged (upto 11carbon	
	atoms)-saturated and unsaturated	
	compounds	
	3.2.2 (b) Biphenyls	
	3.2.3 (c) Cummulenes upto 3 double	
	bonds (d) Monocyclic (5 and 6	
	membered) aromatic and non-aromatic	
	heterocyclic compounds containing a	
	maximum of two hetero	
	atoms among N O S	
	4.1 Heterocyclic Chemistry (8L)	
	411 Introduction: Electronic structure	
	and aromaticity of furan	
	nyrrole thionhene and nyridine	
	412 Synthesis: Synthesis of furans	
IV	nyrroles and thiophenes by Paal-Knor	1
1 1	synthesis Pyridines by Hantzsch	1
	synthesis and from 1.5-diketones	
	413 Reactivity: Reactivity towards	
	electrophilic substitution reactions of	
	furan pyrrole and thiophone on basis	
	ruran, pyrrole and unopnene on dasis	

of stability of intermediate; and	of
pyridine on the basis of electron	
distribution.Nucleophilic substit	ution
reaction of pyridine on the basis	of
electron distribution.	
4.1.4 Reactions of heterocycles:	The
following reactions of furan, pyr	role
and thiophene: Halogenation,	
Nitration, Sulphonation, Vilsmet	ir
formylation reaction, Friedel-Cra	afts
reaction. Furan: Diels-Alder rea	ction.
Ring opening of furan. Pyrrole:	Acidity
and basicity of pyrrole-Comparis	son of
basicity of pyrrole and	
pyrrolidine, Acid catalyzed	
polymerization of pyrrole. Pyrid	ine:
Basicity. Comparison of basicity	v of
pyridine, pyrrole and piperidine.	
Sulphonation of pyridine, with a	nd
without catalyst. Reduction.Oxid	dation
of alkyl pyridines and action of	
sodamide (Chichibabin reaction)).N-
methylation of pyridine. Quaterr	nization
of piperdine, pyrrolidine and Ho	fmann
elimination of the quaternary sal	ts.
4.2. Organic Synthesis (7L)	
4.2.1 Introduction: Criteria for id	deal
organic synthesis. Yield and	
selectivity. Multi- component sy	rnthesis
– with examples, Mannich react	ion,
Hanztsch synthesis of	
pyridines (without mechanism).	
4.2.2 Illustrative synthesis of	
industrially important compound	ls:
Ibuprofen (chiral synthesis),	
paracetamol (green synthesis), L	,-
ascorbic acid (from D-glucose),	
norfloxacin, thyroxine, vanillin,	,
methyl dihydrojasmonate (Hedio	one),
Bifenox-I, pigment red 242, ind	igo, 2-
hydroxy-3-amino-5-nitrobenzen	e
sulphonic acid.	
4.2.3 Newer methods of organic	b
synthesis: Introduction to the use	e of the
following in organic synthesis:	
Ultrasound, microwaves, PTC.	
4.1.1 Introduction: aromaticity of	of
furan,pyrrole,thiophene and	
pyridine.	
4.1.2 Synthesis: Synthesis of fur	ans,
pyrroles, and thiophenes by Paal	-Knor
synthesis Pyridines by Hantzsch	n l

	synthesis and from 1.5-diketones 4.1.3	
	Reactivity: Reactivity towards	
	electrophilic substitution reactions- of	
	furan pyrrole and thiophene on basis	
	of stability of intermediate: and of	
	pyridine on the basis of electron	
	distribution Nucleonhilic substitution	
	reaction of pyriding on the basis of	
	alastron distribution	
	4 1 4 Departiens of hotoroovalos: The	
	4.1.4 Reactions of furan pyrrole	
	and thionhone: Vilemair formulation	
	reaction Eriodal Crafts reaction	
	Furan: Diala Alder reaction Ding	
	Fulall. Diels-Alder Teaction. King	
	basisity of numerical Comparison of	
	basicity of pyrrole-comparison of	
	A aid actalyzed polymorization of	
	Actu cataryzeu porymenization of pyrrole. Dyridine: Pasieity	
	Comparison of basicity of puriding	
	nurrels and piperiding. Sulphonation	
	of pyriding, with and without astalyst	
	Paduation Ovidation of allay!	
	nuridines and action of sodamide	
	(Chichibabin reaction) N methylation	
	of pyridine Quaternization of	
	niperdine, pyrrolidine and Hofmann	
	elimination of the quaternary salts	
	4.2 Organic Synthesis (71)	
	4.2. Organic Synthesis (7L)	
	organic synthesis Vield and	
	selectivity Multi- component	
	synthesis _ with examples Mannich	
	reaction Hanztsch synthesis of	
	nyridines (without mechanism)	
	4 2 2 Illustrative synthesis of	
	industrially important compounds:	
	Ibuprofen (chiral synthesis)	
	paracetamol (green synthesis) L-	
	ascorbic acid (from D-glucose)	
	norfloxacin nalidixic acid vanillin	
	methyl dihydrojasmonate (Hedione)	
	Bifenox-I, pigment red 242 2-	
	hvdroxy-3-amino-5-nitrobenzene	
	sulphonic acid.	
	4.2.3 Newer methods of organic	
	synthesis: Introduction to the use of	
	the following in organic synthesis:	
	Ultrasound, microwaves, PTC.	

		1. Treatment of analytical data-I and		
		sampling (15 L)		
		1.1 Treatment of Analytical Data		
		(<i>T</i> L) Types of errors determinate and		
		indeterminate errors, minimization of		
		errors, constant and proportionate		
		errors, accuracy and precision,		
		measures of dispersion and central		
		tendency: mean, median, average		
		deviation, relative average deviation,		
		standard deviation, variance,		
	_	problems expected]		
	I	1.2 Sampling (8L)		1
		Terms involved, importance of		
		sampling, sampling techniques,		
		sampling of gases, ambient and stack		
		sampling, equipment used, sampling of		
		liquids sampling of static and flowing		
		liquids, methods and equipments used.		
		sampling of solids, importance of		
		particle size and sample size, samples		
		used, need for the reduction in the		
USCH504		sample size, methods of reduction in	2.5	
		sample size, collection, preservation		
		2 Titrimotric analysis I and UV-		
		Visible spectroscopy. (15L)		
		2.1 Acid-base Titrations (5L)		
		Construction of titration curves and		
		choice of indicators in the titration of		
		[1] strong acid and strong base, [2]		
		strong acid and weak base, [5] weak		
		weak base.		
		2.2 Precipitation titrations (4L)		
	тт	Argentimetric titrations, construction		1
	11	of the titration curve, Volhard's		1
		method, Mohr's method, adsorption		
		indicators, theory and applications.		
		2.3 U.V. Visible Spectroscopy (4L)		
		Instrumentation in the case of single		
		and double beam spectrophotometers,		
		Qualitative and quantitative analysis,		
		calibration cure method.		

III	 3. Methods of separation-I (15L) 3.1 Solvent Extraction (8L) Partition coefficient and distribution ratio, extraction efficiency, separation factor, role of complexing agents in solvent extraction, chelation, ion pair formation, solvation, types of solvent extraction: batch, continuous. [Numerical problems expected] 3.2 Chromatography (2L) Introduction to chromatographic techniques, classification of chromatographic techniques. 3.3 Planar Chromatography (5L) 	1
	Principle, techniques and applications of [1] Paper chromatography [2] Thin layer chromatography	
IV	 4. Optical methods (15L) 4.1 Atomic Spectroscopy (7L) Absorption and emission spectra, energy level diagrams, process involved in atomization, flame photometry, flame atomizer, types of burners, monochromators and detectors, atomic absorption spectroscopy; flame and electrothermal atomizer, sources, instrumentation, quantitative applications of atomic absorption and flame photometry, calibration curve method, standard addition and internal standard method. 4.2 Molecular Fluorescence and Phosphorescence Spectroscopy (4L) Theory, instrumentation and applications 4.3 Turbidimetry and Nephelometry (4L) Scattering of light, effect of concentration, particle size and wavelength on light scattering, instrumentation and applications. 	1

Practicals

	Practicals of Course USCH501		
	Physical Practicals		
	Chemical Kinetics –		
	To determine the order between K ₂ S ₂ O ₈ & KI		
	by fractional change method.		
	Viscosity –		
	To determine the molecular weight of high		
	polymer polyvinyl alcohol (PVA) by		
	viscosity measurement.		
	OR		
	To determine the radius of a glycerol		
	molecule by viscosity measurement.		
	Potentiometry –		
	^{1.} To determine the amount of Fe(II) in the		
	given solution by titration with a		
	standard K ₂ Cr ₂ O ₇ solution and hence to		
	find the formal redox potential of		
	Fe^{3+}/Fe^{2+}		
	2. To determine the solubility product and		
	solubility of AgCl potentiometrically		
USCHP05	using chemical cell.	3	8
	OR		
	3. To determine the solubility product and		
	solubility of AgCl potentiometrically		
	using concentration cell.		
	Colorimetry –		
	To determine the amount of Fe(III) present		
	in the given solution by using salicylic acid		
	by colorimetric titration.(static method) $(3-525 \text{ mm})$		
	(<i>A</i> =325 nm)		
	pH –Metry –		
	To determine acidic and basic dissociation		
	constants of amino acid hence to calculate		
	isoelectric point.		
	Course USCH502		
	Inorganic Practicals		
	1. $Iris(en)_2 NI(II)S_2 U3$		
	2. Tetra-amminecopper (II)Sulphate		
	3. CuCl ₂ 2DMSO		

	Inorganic estimation/analysis 1. Ni complexometrically using Murexide indicator		
	2. Cu by iodometric method		
USCHP06	 Practicals of Course USCH503 <u>Organic Practicals</u> Binary Mixture Separation & identification (Solid + Solid) Course USCH504 <u>Analytical Practicals</u> 1. Estimation of persulphate in the given sample by the method of back titration. 2. Determination of the calcium and the magnesium content of a dolomite sample. 3. Determination of glucose content of a honey sample by Wilstater's method. 4. Determination of the amount of fluoride in the given solution colorimetrically. 5. Determination of Vitamin C content of a given tablet by titration with 	3	8
	sodium hydroxide pH metrically		

T.Y.B.Sc. Chemistry Credit Based Semester and Grading System To be implemented from the Academic year 2013-2014

SEMESTER VI Theory

Course	UNIT		Credits	L / Week
USCH601	Ι	 1.1 Molecular Spectroscopy -I 1.1.1 Dipole moment: Dipole moment, polarization of a bond, bond moment, dipole moment and molecular structure. 1.1.2 Rotational Spectrum: Rotational spectrum of a diatomic molecule, rigid rotor, moment of inertia, energy levels, conditions for obtaining pure rotational spectrum, selection rule, nature of spectrum, determination of inter nuclear distance and isotopic shift. 1.1.3 Vibration (IR) spectrum: Vibrational motion, degrees of freedom, modes of vibration, vibrational spectrum of a diatomic molecule, simple harmonic oscillator, energy levels, zero point energy, conditions for obtaining vibrational spectrum, selection rule, nature of spectrum. 1.1.4 Vibration-Rotation spectrum of diatomic molecule vibrating rotor, energy levels, selection rule, nature of spectrum, R and P branches, anharmonic oscillator : energy levels, selection rule, fundamental band, overtones . Application of vibration-rotation spectrum in determining Force constant, determination and significance. Introduction to infrared spectra of simple molecules like H₂O and CO₂ 1.1.5 Raman Spectroscopy : Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum , Stoke's lines, anti-Stoke's lines, Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion.(example of CO₂molecule). 	2.5	1
	Π	 2.1.1 Classical mechanics, limitations of classical mechanics, Black body radiation, photoelectric effect, Compton effect. 2.1.2 Introduction to quantum mechanics 		1

	Planck's theory of quantization wave	
	particle duality de-Broglie equation	
	Heisenberg's uncertainty principle	
	2 1 3 Prograssive and standing waves	
	2.1.5 Floglessive and standing waves,	
	boundary conditions, Schrödinger sinne	
	independent wave equation(derivation not	
	expected)., interpretation and properties of	
	wave function.	
	2.1.4 Postulates of quantum mechanics (
	following are to be considered), 1. state	
	function and it's significance2. Concept of	
	operators : definition, addition, subtraction	
	and multiplication of operators.	
	commutative and non- commutative	
	operators linear operator Hamiltonian	
	operator 3 Figen function and eigen value	
	eigen value equation	
	2.2 Applied Floatrochomistry (51)	
	2.2 Applied Electrochemistry (SL)	
	2.2.1 Polarization, concentration	
	polarization and it's elimination	
	2.2.2 Decomposition potential,	
	experimental determination of	
	decomposition potential, factors affecting	
	decomposition potential (nature of	
	electrolyte, nature of electrodes and	
	temperature) Tafel's equation for hydrogen	
	overvoltage Overvoltage experimental	
	determination of over-voltage 2.2.3	
	Electronlatingobjectives and procedures	
	21 Decembra in Energy (51)	
	3.1 Kenewable Energy Sources (5L)	
	3.1.1. Lithium ion cell.	
	3.1.2 . Fuel cells; Choice of fuel and	
	oxidant, Bacon's H_2 and O_2 fuel cell.	
	3.1.3 . Solar cells, solar energy, photovoltaic	
	effect, semiconductors as solar energy	
	converters, silicon solar cell	
	3.1.4 . Hydrogen : Fuel of the future,	
	production of hydrogen by direct	
	electrolysis of water, advantages of	
TTT	hydrogen as a universal energy medium.	1
111	3.2 Nuclear Magnetic Resonance	1
	Spectroscopy (6L)	
	3.2.1 . Nuclear spin, magnetic moment.	
	nuclear 'g' factor energy levels Larmor	
	precession Relaxation processes in n m r (
	spin-spin relayation and spin-lattice	
	relayation)	
	3.7.7 NMP Spectromator chamical shift	
	shielding and deshielding of motons 1	
	sinciding and desniciding of protons, low	
	resolution n.m.r. spectrum of methanol and	
	ethanol.	

	IV	 3.3 Chemical Kinetics (4 L) 3.3.1 Collision theory of reaction rates, application of collision theory to 1. unimolecular reaction and 2. bimolecular reaction (Lindemann theory, derivation expected). Merits and drawbacks of collision theory. 3.3.2 Classification of reactions as slow, fast and ultra-fast. study of kinetics of fast reactions by Stop flow method. 4.1 Nuclear Chemistry 4.1.1 Types of nuclear radiations and their characteristics, behaviour of ion pairs in electric field, detecton and measurement of nuclear radiations using G. M. Counter and Scintillation Counter. 4.1.2 Kinetics of radioactive decay, units of radioactivity (Curie, Bequerel, Rutherford) 4.1.3 Radioactive equilibrium (secular and transient), determination of radioactive constants for radio-elements having 1. moderate half life, 2. long half life 3.extremely long or short half life. 4.1.4 Use of radioisotpes as tracers in 1. chemical investigations- reaction mechanism, 2. age determination- dating by carbon-14 4.1.5 Nuclear reactions – nuclear transmutation, artificial radioactivity Q-value of nuclear reaction, threshold energy. 4.1.6 Fissile and fertile material, nuclear fission, chain reaction, factor controlling fission process. (multiplication factor and critical size or mass of fissionable material)., nuclear power reactor and 		1
		breeder reactor.		
USCH602	Ι	1.1 Crystal Field Theory (CFT) (7L) 1.1.1 Basic tenets of Crystal field theory and effect of crystal field on central metal valence orbitals. 1.1.2 Splitting of <i>d</i> orbitals in octahedral, tetrahedral and square planar complexes. 1.1.3 Crystal field splitting energy $(10\Delta q/\Delta_0)$ for octahedral complexes and factors affecting the magnitude of Δ_0 . 1.1.4 Crystal field stabilization energy (CFSE), calculation of CFSE, for octahedral and tetrahedral complexes with	2.5	1

	d^{\prime} to $d^{\prime 0}$ metal ion configurations. 115 Effect of crystal field splitting on i)	
	Ionic radius and ii) Lattice energy	
	1 1 6 Theoretical failure of the CET model	
	1.1.0 Inconcurat failure of the CFT model.	
	1.1. Experimental evidence for co-	
	valence in co-ordination compounds.(1)	
	ESR spectrum of $[IrCl_6]^2$ (11) NMR	
	spectrum of tris (acetyl acetanato)	
	vanadium complex, (iii) Intensities of <i>d</i> - <i>d</i>	
	transitions, and (iv) Nephelauxetic effect.	
	1.2 Molecular Orbital Theory (MOT) of	
	Coordination Complexes (4L)	
	1.2.1 Application to octahedral complexes	
	in case of (i) $[Ti(H_2O)]^{3+}$, (ii) Fluoro	
	complexes of Fe(II) and Fe (III) and (iii)	
	Cyano complexes of Fe(II) and Fe (III)	
	1.2.2 Effect of pi-bonding an ligand field	
	splitting parameter in $M \rightarrow I$ and $I \rightarrow M$	
	interactions	
	1 3 Electronic States and Terms for	
	1.5 Electronic States and Terms for Delvelectronic Atoms (41)	
	1.2.1 Introduction: clostronic configuration	
	1.5.1 Introduction. electronic configuration	
	and electronic states, Term symbols,	
	coupling of spin momenta (M_s) , orbital	
	momenta (M ₁)and spin- orbit coupling or	
	Russell-Saunders coupling.	
	1.3.2 Determination of Terms for p^2	
	electronic configuration (as in a carbon	
	atom).	
	1.3.3 Terms and micro-states for transition	
	metal atoms/ions.	
	2. Properties of Coordination compounds	
	(15L)	
	2.1 Stability of Complexes (5L)	
	2.1.1 Thermodynamic stability and kinetic	
	stability of complexes with examples	
	2 1 2 Stability constants: Stepwise and	
	overall constants and their inter-	
	relationship	
	2.1.3 Easters affecting thermodynamic	
	atability	
II	Stability.	1
	2.1.4 Potentiometric method of	
	determination of stability constants with	
	example of silver-ammonia complex.	
	2.2 Substitution Reactions in Octahedral	
	Complexes (5L)	
	2.2.1 Introduction, types of reactions in	
	complexes.	
	2.2.2 Ligand substitution reactions: basic	
	mechanisms.	
	2.2.3 Inert and labile complexes and	

		1	
	electronic configurations and lability of		
	complexes.		
	2.2.4 Acid hydrolysis base hydrolysis and		
	anation reactions		
	2.3 Electronic Spectra (5L)		
	2.3.1 Types of electronic transitions like		
	intra –ligand transitions, charge transfer		
	transitions and intra-metal transitions and		
	(<i>d</i> - <i>d</i> or ligand field transitions for		
	transition metals).		
	2.3.2 Rules for electronic transitions: Spin		
	and Orbital or Lanorte selection rules		
	Orgel Diagrams for D Terms (i.e, d^{\prime} , d^{\prime} and		
	$d^{\circ}.d^{\circ}$ electronic configurations) and its use		
	in interpretation of visible electronic		
	absorption spectra of these configurations.		
	Organometallic Chamistry (151)	1	
	2 1 Organometallia Compounds of main		
	5.1 Organometatic Compounds of main		
	group metals (6L)		
	3.1.1 Introduction: General synthetic		
	methods: (i) Oxidative addition, (ii) Metal-		
	Metal exchange (Transmetallation), (iii)		
	Carbanion-Halide exchange, (iv) Metal		
	Hydrogen exchange and (v) Methylene		
	insertion reactions.		
	3.1.2 Chemical rections: (i) Reactions with		
	oxygen (ii) Alkylation and arylation		
	reactions (iii) Reactions with protic		
	reactions (III) Reactions with protic		
	reagents and (IV) Complex formation		4
111	reactions.		1
	3.2 Organometallic compounds of		
	transition metals (9L)		
	3.2.1 Synthesis, structure, reactions and of		
	ferrocene.		
	3.2.2 Bonding in ferrocene on the basis of		
	VBT.		
	3.2.3 Bonding in Re and Mo halide		
	complexes		
	Some Selected Topics (15L)		
	4.1 Inorganic Polymers (3L)		
	4.1.1Various methods of classification with		
TT 7	examples.		1
IV	4.1.2 Chemistry of borazine with		I
	reference to preparation, properties.		
	structures bonding and applications		
	4.2. Characteristics and Treatment		

	of Liquid 4.2.2 biochemic chemical of organic car anaerobic j 4.2.3 contamina principles and sedime 4.2.4 tertiary of 4.3 N 4.3.2 of nanoma 4.3.3 between by Optical pro conductivi properties. 4.3.4 nanofilms, nanowires 4.3.5 preparation gel methoo 4.5 Inorga 4.4.2 (i) antacids magnesia, cathartics of phosphate) Topical ag adsorbents antimicrob permangar and astring	Effluent (06L) Characterization of waste: al oxygen demand (BOD), oxygen demand (COD), total rbon (TOC), aerobic and processes. Removing of solid nts, physical and chemical such as coagulation, flocculation entation. Primary,secondary and liquid effluents. Anomaterials (04L) Introduction and importance iterials. Properties (Comparison ulk and nanomaterials): (i) operties, (ii) Electrical ity, and (iii) Mechanical Forms of nanomaterials: , nanolayers, nanotubes, , and nanoparticles. Chemical methods of n: (i) Colloidal route, and (ii) Sol- d. anic Pharmaceuticals (2L) Gastrointestinal agents viz., s (aluminium hydroxide, milk of sodium bicarbonate and (ii) (magnesium sulphate and sodium). gents viz., (i) protectives and s (talc, calamine), (ii) bial agents (potassium nate, tincture iodine, boric acid) gents (alum).		
USCH603	I.1.3 Spectrum, 1.1.1 Intro spectrum, frequency. I 1.1.2 UV- theory, sol spectrum, auxochron shift,Hyps	Visible Spectroscopy: Basic lvents, nature of UV-VIS concept of Chromophore, ne,bathochromic sochromic shift hyperchromic	2.5	1

1		
	effect and chromophore-auxochrome	
	interactions.	
	1.1.3 IR Spectrocopy: Basic theory, nature	
	of IR spectrum, selection rule, fingerprint	
	region	
	1.1.4 PMR Spectroscopy: Basic theory of	
	NMP noture of DMP spectrum chemical	
	him chemical standard for DMD solution	
	shift (<i>O</i> unit), standard for PMR, solvents	
	used. Factors affecting chemical shift:	
	(1) inductive effect (2) anisotropic effect	
	(with reference to C=C, C=C, C=O and	
	benzene ring). Spin- spin coupling and	
	coupling constant. Proton exchange-	
	application of deuterium exchange	
	Application of PMR in structure	
	determination	
	1.1.5 Spectral characteristics of following	
	alaggag of organia compounds, including	
	hangen and managehatituted hangen as	
	in the line and monosubstituted benzenes,	
	with respect to UV-VIS, IR, PMR:	
	(1)alkanes (2)alkenes and polyenes (3)	
	alkynes (4) haloalkanes (5) alcohols	
	(6) carbonyl compounds (7) ethers (8)	
	carboxylic acids (9) esters (10)amines	
	(11) amides (broad regions characteristic of	
	different groups are expected).	
	1 1 6 Mass Spectrometry Basic	
	theory Nature of mass spectrum General	
	rules of fragmentation Importance of -	
	molocular ion peak isotonia peaks	
	hageneal. Nitro con rula Ulustrativo	
	basepeak, Nilogen fule.musualive	
	fragmentation of alkanes and aliphatic	
	carbonyl compounds (No Mclafferty	
	rearrangement).	
	1.1.7 Problems of structure elucidation of	
	simple organic compounds using individual	
	or combined use of the above spectroscopic	
	technique are expected.(index of	
	hydrogen deficiency should be the first sten	
	in solving the problems)	
	in solving the problems).	
	2.1 Polymers (11L)	
	2.1.1 Introduction: General idea of	
	monomers, polymers, and polymerization,	
	natural and synthetic polymers.	
	Homoplymers and copolymers.	
П	Classification of polymers- Plastic fibres	1
	resing elastomers Thermonlastics and	
	thermosets Copolymers-alternating block	
	random graft	
	1 anuoni, gran.	
	2.1.2 Micchanishi of hec faulcal addition	

	polymerization.	
	2.1.3 Elastomers: Natural and synthetic	
	rubbers Diene polymerization: 1.2- and	
	1.4 addition (sig and trans) nolymorization	
	1,4- addition (cis and trans) porymetization	
	of isoprene. 1,3-Butadiene-styrene	
	copolymer.	
	2.1.4 Stereochemistry of polymers:	
	Tacticity Role of Ziegler-Natta catalyst	
	(a) ordination polymorization) in directing	
	(co- ordination porymenzation) in directing	
	the facticity in polypropylene (no	
	mechanism).	
	2.1.5 Preparation & use of polymers:	
	(1) Addition polymers: (a) polyethylene	
	(b)polypropylene (c) PVC (d) polystyrene	
	(a) polyacrylonitrile (f) polyacinylalcohol	
	(c) poryaci yronnune (r) poryvinyraiconor	
	(2) Condensation Polymers: (a) Polyesters	
	(b) polyamides (c) polyurethans (d)phenol-	
	formaldehyde resin (e) epoxy resin (f)	
	polycarbonates.	
	2.1.6 Recyclable polymers Biodegradable	
	nolymors and their uses Biomedical use of	
	polymens and men uses. Diomedical use of	
	polymers.	
	2.1.7 Additives to polymers: Plasticizers	
	,stabilizers and fillers.(The students are	
	expected to identify monomers in a given	
	polymer and draw the structure of a	
	polymer from a given set of monomers)	
	2.2 Photochomistry	
	2.2 1 Introduction: Difference hatween	
	2.2.1 Introduction. Difference between	
	thermal and photochemical reactions.	
	Jablonski diagram, singlet and triple states,	
	allowed and forbidden transitions, fate of	
	excited molecules, photosensitization.	
	2.2.2 Photochemical reactions of olefins:	
	photoisomerisation photochemical	
	rearrangement of 1.4 diamas (di π mathana)	
	2.2.2 Dhata ahamistry of each anyl	
	compounds: Norrish I, Norrish II cleavages,	
	Photo reduction (e.g. benzophenone to	
	benzpinacol).	
	3.1 Catalysts and Reagents (5L)	
	Study of the following catalysts and	
	reagents with respect to functional group	
	transformations and selectivity (no	
	masharian)	
III	mechanism).	1
	3.1.1 Catalysts: Catalysts for	
	hydrogenation: Raney Ni,Pt and PtO ₂ :	
	C=C, CN, NO ₂ , aromatic ring; Pd/C: C=C,	
	COCl→CHO (Rosenmund); Lindlar	
	catalyst: alkynes. Wilkinson's catalyst for	

	stereo selective reduction of olefins. 3.1.2 Reagents : (1)LiAlH ₄ and Red-Al: reduction of CO,COOR, CN, NO ₂ . (2) NaBH ₄ : reduction of CO (3) SeO ₂ : hydroxylation of allylic and benzylic positions,oxidation of CH ₂ , alpha to CO to CO.(5)mCPBA and R-OOH/H ₂ O ₂ for epoxidation of C=C. (6) NBS: allylic and benzylic bromination of position alpha to CO. 3.2 Natural Products (10L) 3.2.1 Introduction: Primary and secondary metabolites. Introduction to the following natural products with respect to the sources and classes. (Structures of the compounds specified below are expected). (a) Terpene: Isoprene and special isoprene rule.α-terpeniol, citral,camphor, α-pinene. (b) Alkaloids: nicotine,atropine. (c) Vitamins: Vitamins A and C. (d) Hormones: adrenaline, thyroxine. (e) Steroids: cholesterol, progesterone. 3.2.2 Structure determination of natural products: 3.2.2.1 Ozonolysis in terpenoids- Examples of open chain and monocyclic monoterpenes. 3.2.2.2 Hofmann exhaustive methylation and degradation in alkaloids – simple open chain and monocyclic amines.3.2.2.3 Structure determination of citral and nicotine through degradation studies. Total synthesis of degradation studies. Total synthesis of (i) Citral from 3-methylbutan-1-ol (ii) Nicotine from nicotinic acid.	
	(a) Terpene: Isoprene and special isoprene rule. α -terpeniol, citral,camphor, α -pinene.	
	(b) Alkaloids: nicotine, atropine. (c) Vitamins: Vitamins A and C	
	(d) Hormones: adrenaline, thyroxine.	
	(e) Steroids: cholesterol, progesterone.	
	products: 3.2.2.1 Ozonolysis in terpenoids-	
	Examples of open chain and monocyclic	
	monoterpenes. 3.2.2.2 Hofmann exhaustive	
	simple open chain and monocyclic	
	amines.3.2.2.3 Structure determination of	
	citral and nicotine through degradation	
	studies. Total synthesis of degradation studies. Total synthesis of (i) Citral from	
	3-methylbutan-1-ol (ii) Nicotine from	
	nicotinic acid.	
	3.2.4 Commercial importance of	
	terpenoids and alkaloids:	
	pinene, α and β ionones.	
	geraniol and nerol from citral.	
	3.2.5	
	4.1 Organometallic Chemistry (5L)	
	4.1.1 Intoduction: Carbon-metal bond- Nature types reactivity	
	4.1.2 Organo magnesium Compounds:	
	Grignard reagent :Preparation, structure,	
IV	and stability, Reaction with compounds	1
	compounds, cyanides and CO ₂ .	
	4.1.3 Organolithium Compounds :	
	Preparation using alkyl/aryl halides.	
	Reactions with compounds containing	

	acid com dial with 4.1. of d chlo reac 4.2 Bio 4.2 Stru acid Proj stru prej ami azal 4.2. Poly and Men (exa non Sou sepa den hyd seco stru 4.2. Not seco stru acid Proj stru prej ami azal 4.2. Not stru prej ami azal 4.2. Not stru stru prej ami azal 4.2. Not stru stru prej ami azal 4.2. Not stru acid Proj stru prej ami azal 4.2. Not stru stru prej ami azal 4.2. Not stru acid Stru acid Stru acid Stru acid Stru acid Stru acid Stru acid Stru acid Stru acid Stru acid Stru acid Stru acid Stru acid Stru acid Stru stru stru stru stru stru stru stru s	ne nyurogen, akyr nandes, carbonyr npounds, cyanides and CO ₂ . Lithium kyl cuprates: Preparation and reactions h aliphatic /aromatic/vinylic halides. 4 Organozinc compounds : Preparation lialkyl zinc. Reaction with water, acid orides and alkyl halides. Reformatsky ction (with mechanism). Chemistry of some Important molecules: (10L) 1 α-Amino acids: neture, configuration, Essential amino ds and their abbreviations, classification, perties: pH dependency of ionic cture and isoelectric point. Methods of parations: Strecker synthesis, domalonate synthesis, Erlenmeyer lactone synthesis. 2 Polypeptides and Proteins: ypeptides: Peptide bond. Nomenclature representation of polypeptides. rrifields solid phase peptide synthesis ample of di- and tri- peptides for nenclature and synthesis). Proteins: trees, types,functions, colloidal nature, aration based on isoelectric point, aturation and functions. Partial and total rolysis. General idea of primary, ondary, tertiary and quartenary tetures. 3 Nucleic acids: Selective hydrolysis of leic acids.Sugars and bases in nucleic ds. Stuctures of nucleosides an leotides in DNA and RNA. Structure of leic acids (DNA and RNA): Base ring in nucleic acids. Importance of leic acids-self duplication, protein thesis.		
USCH604	I Electrony I Electrony I Electrony I Electrony I Electrony I Ikc	ctroanalytical methods. (15L) D.C. Polaroghraphy (11L): Polarizable nonpolarizable electrodes, basic nciples, residual current, diffusion rent, limiting current, dropping mercury ctrode, supporting electrolyte half wave ential, derivation of the polarographic ve equation for a reversible reaction. ovic equation, oxygen interference and	2.5	1

		and quantitative analysis, calibration curve	
		[Numerical problems expected]	
		1.2 Amperometric Titrations: Basic principles, rotating platinum electrode and nature of the titration curves, applications, advantages and limitations.	
		Methods of separation-II (15L)	
	п	2.1 Gas chromatography (6L): Gas liquid chromatography, basic principles retention time, retention volume, resolution, peak width theoretical plates. HETP, instrumentation, columns, detectors, applications.	
		2.2 High Performance Liquid Chromatography (4L): Instrumentation, types of elution, U.V. and I.R. detector and applications	1
		2.3 Ion Exchange Chromatography (5L): Types of ion exchangers, mechanism of ion exchange, selectivity coefficients and separation factors, capacity and its determination, factors affecting the separation of ions, applications.	
		Treatment of analytical data-II and Titrimetric analysis-II (15L)	
	III	 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation constants of metal EDTA complexes, construction of titration curves, types of EDTA titrations,methods of increasing the selectivity of EDTA as a titrant, metallochromic indicators, theory and applications. 3.3 Redox Titrations (4L): General introduction, theory of redox indicators, 	1
		criterion for choosing an indicator for a redox titration, construction of the titration curves in the case of (1) Fe (II) Vs. Ce(IV)	

	(2) Fe (II) Vs. dichromate, use of diphenyl amine and ferroin as redox indicators.	
IV	 (2) Fe (II) Vs. dichromate, use of diphenyl amine and ferroin as redox indicators. Concepts in Quality and miscellaneous methods (15L) 4.1 Total quality management (5L) : concept of quality, quality control, quality assurance total quality management, ISO series, Good laboratory practices 4.2 Mass Spectrometry (2L): Basic principles, introduction of components only 4.3 Thermal Methods (5L): Classification of thermal methods, thermogravimetric analysis, basic principles, instrumentation factors affecting the TG curve, applications 	1
	4.4 Introduction to Radio Analytical Techniques (3L): Classification of the techniques, introduction to neutron activation analysis and its applications.	

	Fracticals		
	Practicals of Course USCH601		
	Physical Practicals		
	Chemical Kinetics –		
	To determine the energy of activation for the acid catalysed hydrolysis of methyl acetate.		
	Partition coefficient		
	To determine the equilibrium constant for the reaction $KI + I_2$ KI_3 by partition method.		
	water is to be given)		
USCHP07	Potentiometry –	3	8
	1. To determine the strength of the given strong acid (HCl) by potentiometric titration using quinhydrone electrode (Calculation of pH from E_{cell} and the plot of (a) $\frac{\Delta E}{\Delta V}$ against V		
	(b) pH against V graphs are expected).		
	OR		
	To determine pKa value of the given weak monobasic acid (CH ₃ COOH) by e.m.f. measurements.		
	2. To determine E_{cal} at room temperature		

D. 4. ~1

	and using this value, determine standard reduction potential of Ag/Ag ⁺ electrode at room temperature.		
	Conductometry – To determine the amount of dibasic acid (Oxalic acid) by conductometric titration		
	against strong base.		
	To determine the relative strength of monochloroacetic acid and acetic acid conductometrically.		
	Course USCH602		
	Inorganic Practicals		
	1. 8-(hydroxyquinolinao) magnesium (II)		
	2. Tris-(acetylacetonato) iron (III)		
	3. Bis-(Dimethylglyoximato) nickel (II)		
	Inorganic estimations/ Analysis		
	2. Fe (II) using KMnO ₄		
	AI (back titration) complexometrically		
	Practicals of Course USCH603		
USCHP08	<u>Organic Fracticals</u> Binary Mixture Senaration		
	Separation Separation Separation of mixture containing (VL + NVL) & $(S + VL)$ components.	3	8
	Organic Preparations		
	1. Aniline/p-toluidine \rightarrow N-Acetyl derivative		
	 Salicylic acid/nitrobenzene/ Acetanilide → Nitro derivative 		

3.	β - naphthol \rightarrow Methyl Ether derivative (Using dimethyl sulphate)	
4.	Acetanilide \rightarrow p-bromoacetanilide derivative	
5.	Aniline/ p-toluidine \rightarrow Schiff base with benzaldehyde	
6.	Hydroquinone/beta naphthol $ ightarrow$ Acetyl derivative	
7.	Methyl salicylate/ethyl benzoate → Acid derivative (Hydrolysis)	
8.	Benzaldehyde/p-nitrobenzaldehyde \rightarrow Acid (Oxidation)	
Cours	e USCH604	
<u>Analy</u>	tical Practicals	
1.	Determination of chemical oxygen demand of a water sample.	
2.	Determination of percentage purity of a sample of common salt using a cation exchanger.	
3.	Determination of potassium content of a commercial salt sample by flame photometry.	
4.	Determination of acetic acid content of a vinegar sample by potentiometric titration with sodium hydroxide using quinhydrone.	
5.	Determination of Cr (VI) in the given solution as dichromate by the method of least squares, spectrophotometrically	